A Local Weyl's Law, the Angular Distribution and Multiplicity of Cusp Forms on Product Spaces

نویسندگان

  • JONATHAN HUNTLEY
  • DAVID TEPPER
چکیده

Let Y\ßf be a finite volume symmetric space with %? the product of half planes. Let A, be the Laplacian on the ¡th half plane, and assume that we have a cusp form , so we have A, = X¡ for i = 1, 2, ... , n . Let A = (Ai,..., An) and let R = \/>-\ + ■ ■ ■ + r2„ with rj + j = A, . Letting r = (ri.rn), we let M(r) denote the dimension of the space of cusp forms with eigenvalue A. More generally, let M(r, a) denote the number of independent eigenfunctions such that the r associated to an eigenfunction is inside the ball of radius a , centered at f. We will define a function f(r), which is generally equal to a linear sum of products of the r¡. We prove the following theorems. Theorem 1. \(\ogR)»J Theorem 2. M(r,A) = 2"f(r) + o(^L).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Packet structure and paramodular forms

We explore the consequences of the structure of the discrete automorphic spectrum of the split orthogonal group SO(5) for holomorphic Siegel modular forms of degree 2. In particular, the combination of the local and global packet structure with the local paramodular newform theory for GSp(4) leads to a strong multiplicity one theorem for paramodular cusp forms.

متن کامل

Weyl’s Law in the Theory of Automorphic Forms

For a compact Riemannian manifold, Weyl’s law describes the asymptotic behavior of the counting function of the eigenvalues of the associated Laplace operator. In this paper we discuss Weyl’s law in the context of automorphic forms. The underlying manifolds are locally symmetric spaces of finite volume. In the non-compact case Weyl’s law is closely related to the problem of existence of cusp fo...

متن کامل

Irreducibility Criteria for Local and Global Representations

It is proved that certain types of modular cusp forms generate irreducible automorphic representations of the underlying algebraic group. Analogous Archimedean and non-Archimedean local statements are also given. Introduction One of the motivations for this paper was to show that full level cuspidal Siegel eigenforms generate irreducible, automorphic representations of the adelic symplectic sim...

متن کامل

Applications of a Pre–trace Formula to Estimates on Maass Cusp Forms

By using spectral expansions in global automorphic Levi–Sobolev spaces, we estimate an average of the first Fourier coefficients of Maass cusp forms for SL2(Z), producing a soft estimate on the first numerical Fourier coefficients of Maass cusp forms, which is an example of a general technique for estimates on compact periods via application of a pre–trace formula. Incidentally, this shows that...

متن کامل

Eichler-shimura Theory for Mock Modular Forms

We use mock modular forms to compute generating functions for the critical values of modular L-functions, and we answer a generalized form of a question of Kohnen and Zagier by deriving the “extra relation” that is satisfied by even periods of weakly holomorphic cusp forms. To obtain these results we derive an Eichler-Shimura theory for weakly holomorphic modular forms and mock modular forms. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009